If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-22x-31=0
a = 3; b = -22; c = -31;
Δ = b2-4ac
Δ = -222-4·3·(-31)
Δ = 856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{856}=\sqrt{4*214}=\sqrt{4}*\sqrt{214}=2\sqrt{214}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{214}}{2*3}=\frac{22-2\sqrt{214}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{214}}{2*3}=\frac{22+2\sqrt{214}}{6} $
| 11(t-2)+7t=6(3t+3)-12 | | (18+x)=(4x-3) | | .029(.30+x)=60 | | X/7+x=9/7 | | 5x-6+11x-42=48 | | 0.5(x-2)-0.8(x+2)=-0.3x-0.6 | | F(x)=(5-2x/3x-1) | | 3=x+29/7 | | -4y=4y^2-3 | | 12÷x+4=5 | | 7.06=2x(3.14) | | 7.06=2x3.14 | | c=2(7.06+3.14) | | 3(x/2-4)=-18 | | 8y+y=8y-5 | | 2x=9.1×(0.1-x) | | 24x+63=14x+63 | | 20/x=5/10 | | 5/x=10/5 | | 5/x=5/10 | | 2x+9(6×-5)=179 | | |2x-1|=|4x-3| | | 5/x=5/5 | | 0.80x-0.30(50+x)=0.20(50) | | F(X+2)=-x+3 | | 3x+3(4x-2)=129 | | (y+5)+(2y)=180 | | 3x+7(3x-7)=95 | | 3x+7(3x-7)=91 | | 3x+5(x-5)=31 | | 10-2(x+3)=3(2x+8) | | x-1=4x-7 |